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Abstract

A statistical model estimating the mean and standard
deviation of each dropsize canting angle, assuming
Gaussian canting angle distributions, is presented.
The model utilizes the one-dimensional energy spec-—
trum of horizontal turbulence given by Smith+ and by
using the differential equation for the horizontal
drop movement, it calculates the mean and standard
deviation of each drop-size canting angle. Compar-
ison with Saunders'?2 work shows good agreement.

Introduction

Current interest in microwave propagation studies
through precipitation particles has been prompted

by proposals for terrestrial and satellite communica-
tion systems operating above 10 GHz. At these fre-
quencies the presence of rain in the transmission
medium causes attenuation and depolarization of the
transmitted radiation. Both effects may represent a
severe limitation on system performance and in par-
ticular, the depolarization effect is of considerable
importance in the possibility of using two orthogonal
polarizations as separate communication channels in
future satellite and terrestrial communication
systems.

The purpose of this paper is to report a statistical
model relating turbulence to the reaction of the
raindrop canting angle to this turbulence. It is
assumed that in general a wind spectrum exists, and
that within the turbulent boundar% layer, the direc-
tion of the mean wind is constant” for the case of
neutral or near neutral atmospheric conditions (i.e.,
purely mechanical turbulence), a case most appropri-
ate in a precipitation environment »5., Using the
differential equation describing the horizontal drop
movement, a canting angle 'Transfer Function' is de-
veloped. By applying the horizontal wind velocity
spectrum as 'input' and by using Taylor's series®,
the 'response' of the drop (i.e., the mean and vari-
ance of its canting angle) is estimated.

Theory

The differential equation for the horizontal drop
movement is given by’

dv(t) g _ .8
T + v v(t) = T u(t) (@D

where,

V(t) is the horizontal drop velocity,

Vv is the vertical drop velocity (assumed to be
constant and equal to the terminal velocity
in stagnant air),

U(t) is the wind velocity at the position of the

) drop, and

‘g is the gravitational constant.

Equation (1)-is a linear differential equation of the
first order and its solution for the mean wind veloc-
ity was given in Reference 8 for the case of neutral
or near neutral conditions by using a logarithmic
wind profile.

In addition to the mean horizontal wind velocity,
there is a wind variation that can be described by,
o

U(t)=f U(F) cos (ut + 87(H)) df

o

U(£)

¢ Jduwe + 87(£) e—(jmt + e’(f)))df (2)

(

6“\3

where,

ﬁ(f) is the peak horizohtal wind variation for a
frequency f£.

Similarly, the horizontal raindrop velocity variation
can be described by,

oo
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where,
G(f) is the peak horizontal raindrop variation for
a frequency f, and
¢(f) is the phase delay related to the response of

the raindrop to wind fluctuatioms at
frequency £, i.e., ¢(f) = 87(£) -7 (£)

Using equations (2) and (3) in equation (1) we obtain,
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From Reference 7,
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where,

@ is the canting angle of a raindrop due to wind
variations.
Then,
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The variable Vv E;ZEZwV;)i is the amplitude of a
‘Transfer Function' relating tamf to a sinusoidal wind
variation. The phase delay introduced by the transfer
function is tan—1l(g/wVv). The energy spectrum of tanf,
i.e., of the output, can be obtained by applying this
transfer function to the horizontal wind velocity
energy spectrum S(f). Integrating this output spec-
trum over all frequencies, the variance of tanb can
be calculated.

Thus,

2 = 2
9% o f|T.F.‘ S(f)df
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The one-dimensional energy spectrum S(f) of turbulence
can be expressed as-,

S(f) = 0.15 U2/3 ¢2/3 £5/3 (9

f is the frequency of wind variation,
€ is the rate of turbulent energy dissipation, and
U is the wind velocity at the height of interest.

In neutral or near neutral atmospheric conditions, the
rate of dissipation is given by-,

o @
€=U (10)

where,

U, is the friction velocity, and
h is the height of interest.

In the case where there is precipitation, the atmos-
phere is most likely to be neutral or near neutral.
This is the case, sinced (i) cloud cover will reduce
incoming solar radiation so that turbulence will be
losing energy, but (ii) the ground will be wet and
hence, most of the available energy will go into eva-
_poration, thus adding to the turbulent energy.

The combination of the above two conditions will pro-
duce energy equilibrium in the turbulence and thence,
the atmospheric conditions will be neutral or near
neutral. In addition, although the turbulence in the
atmosphere is generally both -convective and mechanical
in origin, in high winds, even without any precipita-
tion present, convective turbulence plays a relatively
minor role4. The reason for this is that whereas
mechanical turbulence rapidly increases with wind vel-
ocity, convective turbulence, if anything, tends to be
damped out by the powerful mixing action caused by -the
mechanical turbulence; the latter prevents the neces-
sary thermal instabilities from arising and tends to
reduce the atmosphere to a state of neutral stability.

- case where f(8) is a Gaussian distribution, this is

- (e(m+g” ()03)* (12)
) Using,
x = tan®
n = tanbg
02 = 02
X tanb

The mean and variance of the canting angle 6 can be
estimated by using the mean and variance of tanf and
by employing the Taylor's series expansion assuming
that near the mean value of tanf, the probability
density function of 8, £(8), is 'smooth'®. In the

readily seen to be true. Thus, in general, if the
mean value N and variance Oy of the random variable
x are known, the random variable g(x) has the follow-
ing estimates of mean and variance
2 i
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Using equations (11) and (12), we obtain the following
estimates for the mean and variance values of the
canting angle 0,
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with,
E1(Z) the exponential integral
Computations

In a paper by Saundersz, the distribution. of canting

angles during two rainstorms is given using the images
of 463 raindrops obtained with a raindrop camerag’lo’l1
by personnel atthe T1linois State Water Survey. In
order to compare Saunders' results with the model pre-
sented in this paper, further information was needed
in addition to the mean horizontal wind speed of

15 m/s and the precipitation rate of 28 mm/hr pro-
vided, namely, (i) the height of the raindrop camera,
(ii) the type of the terrain where the measurements
were taken, and (iii) the height of the anemometer.

The information supplied to the authorll"‘12 indi-
cated that (i) the height of the camera was approxi-
mately 1.5 meters, (ii) the type of the terrain was
"2 flat countryside with some form of vegetation,'
and (iii) the height of the anemometer was assumed to
be approximately 10 meters. Thus, the mean friction
velocity Ux was taken as equal to 1.303 m/s.

Assuming the above and using Equations (15) and (8)
in Equations (13) and (14), the mean and standard
deviation of the canting angle of each raindrop size
were calculated. These are provided in Table 1.

Assuming a Gaussian canting angle distribution for each
drop size and weighting each drop size distribution



MEAN AND STANDARD DEVIATION OF CANTING
ANGLE (Mean Horizontal Wind Velocity

U = 15 m/s, Measured at Height h = 10 m,
Height of Observationms h = 1.5 m, Friction

TABLE 1.

Velocity Ui = 1.303 m/s)

Drop E(8) 99
Radius (m) (Degrees) | (Degrees)
0.00025 8.17 44,91
0.00050 21.57 25.76
0.00075 25.07 20.47
0.00100 26.45 17.89
0.00125 27.07 16.32
0.00150 27.32 15.42
0.00175 27.42 14.87
0.00200 27.46 14.54
0.00225 . 27.48 14.37
0.00250 27.48 14.28
0.00275 27.48 14.24
0.00300 27.48 14.23
0.00325 27.48 14.23

according to the number of drops for each sizel3, the
fraction of raindrop population with canting angles
>0 and < -0 degrees, as in Saunders' Figure 2, were
plotted. This is shown in Figure 1 compared with
Saunders' graph for the 28 mm/hr precipitation rate
and 15 m/s mean horizontal wind velocity.

Discussion and Conclusions

In the present paper, a statistical canting angle model
was presented that provides an estimate of the mean
and standard deviation of the canting angle for the
individual raindrop sizes. These estimates in turn
can be used to provide estimates of mean and standard
deviation of the cross-polarization discrimination
values, as well as system outage times in both terres-—
trial and satellite links. 1In order to use the model,
one needs to have knowledge of (i) the precipitation
rate, (ii) the mean horizontal wind velocity at a
reference height, and (iii) the type of terrain.

It is to be noted that near neutral atmospheric con-
ditions are assumed, a situation most likely to exist
when it is rainingS. ;

Compared with Saunders' measured canting angle dis-
tribution, the model shows good agreement. The dif-
ferences between Saunders' and the results of Figure 1
in this paper are probably due to (i) inaccuracies
introduced by the raindrop camera quoted by Saunders,
(ii) the sample of 259 drops that Saunders used, to
calculate its canting angle distribution, being too
small for an accurate canting angle distribution to
be drawn, and (iii) the equations presented in this
paper, being approximate, not completely describing
horizontal wind velocity variations and generally
effects of atmospheric conditions on canting angles
in a precipitation environment.
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