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Fig. 4. Magnitude  of  attenuation  function for an ice path.  Parameters: 

€/eO = ~1/.q-, = 6, CY = 01 = 1.67 X 10-3 mho/m. 

creases  as the elevation  change h, is increased.  This is con- 
sistent  with  the decrease  in the  mode conversion  coefficients 
with increasing h ,  as computed  by Wait and  Spies [8]  for 
an  elevation  change  in the earth-ionosphere  waveguide. 

The  right  section of Fig. 3 is ice with  parameters = 
6 and u1 = 1.67 X lop3  mho/m, which  corresponds to a 
loss tangent of 0.5.  The  electric4  properties of sea  ice  are 
quite variable [ l o ] ,  and thin layers of low-loss  sea  ice  can 
support  a  trapped  surface wave [3] .  Here  we  assume that 
the ice is sufficiently  thick or lossy; it can  be  represented 
by  a half  space.  The  rapid  decrease  in field strength  is similar 
to  that over land in Fig. 2. 

In Fig. 4 we choose  an all-ice path  with  an  elevation  change 
to model  an  ice  shelf.  Here  a  large  increase  in field strength 
occurs  at  the  elevation  change because of the significant 
height  gain of the  ground wave over  ice. To illustrate the 
height  gain, I W‘ I for hb  = 150  m  and 300 m is also shown 
in  the  left  section.  For  distance well beyond  the  elevation 
change,  a  cross-over  occurs,  and I W ’ I  decreases with increas- 
ing h, .  

IV. CONCLUSION 
A  mode-matching  formulation  has  been  utilized to com- 

pute  the  effect of an abrupt change  in  elevation on mixed- 
path ground-wave propagation  at  HF. Near the elevation 
change the field behavior is determined  primarily  by  the 
height gain of the  incident  ground wave. At  large  distances 
from  the  boundary an  elevation  change  results  in  a  decrease 
in field strength. 

Experimentd  data  to  confnm  our analytical  approach  are 
not available, but  a  recent  study  by Soviet  workers [ 111  pro- 
vides  a  check on  the mode-matching  technique,  where  re- 
flected waves are  neglected.  They  consider both  theory  and 
experiment  for  a fin-like structure  on  a curved  surface that is 
otherwise  sm’ooth. Also our  results  are  consistent  with  earlier 
theoretical  results  of  Furutsu [ 121. 
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A Statistical Raindrop  Canting Angle Model 

JOHN HOWARD, MEMBER, IEEE,  AND MARIOS GEROGIOKAS 

Abstract-A mathematical  model to predict  accurately  the  mean  and 
standard deviation of each drop-size  canting  angle,  assuming 
Ganssian  canting  angle distributions,  is  presented.  The model 
utilizes  the one-dimensional  energy  spectrum of horizontal  turbulence 
given by Davenport. By using  the  differential  equation  for  the 
horizontal-drop  movement, the  mean  and  standard  deviation  of  each 
drop-size canting  angle are calculated.  Comparison  with  Saunders’s 
work  shows  good agreement. 

I. INTRODUCTION 
Attempts have  been  made  by  several  workers (e.g., [ 21- 

[4] )   to  devise  a  statistical  canting  angle  model.  Variations  in 
raindrop  canting angles  are  responsible for  the  variations oc- 
curring  in  crosspolarization  discrimination  measurements. All 
the workers to  date have  used the  “constant  canting  angle” 
model [5 ] ,  which  provides an “effective  mean  canting  angle” 
[ 61, and  they have assumed a Gaussian distribution  about  this 
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mean  with a variance calculated from  their measured cross- 
polarization  discrimination values. Recently, Howard and 
Mathews [ 7 ]  have  shown  how t o  implement the well-known 
"Brussaard canting angle" model [SI to predict  mean cross- 
polarization  discrimination values for a  satellite  link. 

In this  communication,  by making  use of  the one-dimen- 
sional energy spectrum of horizontal  turbulence given by 
Davenport, a mathematical  model  estimating  the  mean  and 
standard  deviation  of  each  drop  size  has  been  developed both 
for ground-to-ground  and  ground-to-satellite  paths. 

A .  Canting  Angle Variation as a Function of Wind Velocity 

The differential  equation  for the horizontal-drop  movement 
is given by 

where 

V(t) horizontal-drop  velocity 
Vu vertical-drop  velocity (assumed to  be  constant  and 

equal to   the  terminal  velocity in  stagnant  air) 
U(t) wind  velocity at   the position of the  drop 
g gravitational  constant. 

Equation (1) is a  linear  differential  equation  of the first 
order  and  its  solution  for  the  mean  horizontal  wind  velocity 
was given in [ 71. It is  repeated  here  in Appendix A. 

In  addition to  the  mean  horizontal wind  velocity  there is a 
wind  variation  that  can  be  described  by 

u = 2 cos ut 

where 

U peak  horizontal-wind  variation for a frequency f 
given by 

fc =m. 
S ( f )  energy spectrum  of  turbulence. 

Similarly, the  horizontal  raindrop velocity  variation  can  be 
described by 

v =  V c o s ( u t + l p )  

where 

f peak  horizontal  raindrop  variation  for a frequency f 
rp phase  delay  related to   the response  of the raindrop 

to wind  fluctuations a t  a frequency f. 

Using (3) and (4) in  (1 ) we  have 

It is known [SI that 

where 

6, canting angle of a raindrop  due to the wind varia- 
tions. 

Then, 1 

i cos ut - 3 cos ( u t  + lp) 
tan 29, = 

vu 

The  total  canting angle can  be  obtained  from 

tan 6 = tan 6, + tan a,, (1 0 )  

where 

6, mean  canting of a raindrop (see  (A1 3) or (A1 5)). 

From  (1 0) we have 

From a study of about 70 spectra  of  turbulence,  Davenport 
suggested the following  empirical  expression for  the energy 
spectrum of turbulence: 

Authorized licensed use limited to: John Howard. Downloaded on August 12,2021 at 19:22:15 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS  ON ANTENNAS AND PROPAGATION, VOL. AP-30, NO. 1, JANUARY 1982 143 

where 

S(f) energy  spectrum of turbulence,  invariant  with 

f frequency of  wind  variation 
Ul velocity  at  a  reference  height  near the ground 

C ,  drag  coefficient given by [ l o ]  

height 

(usually at  the  standard  reference  height of 10  m) 

2 

CD =(+) 
2, constant  depending  on the  terrain  compared  with 

the reference  height  of 10  m,  and k is Von Karman’s 
constant (k % 0.4) and 

Using (1  1)  and (1  2)  the  standard  deviation of the  canting angle 
of  a single raindrop size can  be  computed  from‘ 

ua = [ lm( tan-’ ( tan 6, 
1 + tan’ a0 + tan 6,, tan 6, 

In  a  paper by Saunders [2]  the  distribution of canting 
angles during  two  rainstorms is given,  using the images  of 463 
raindrops  obtained  with  a  raindrop  camera [ 1 11 , [ 121 by per- 
sonnel at  the Illinois State Water  Survey. 

In order  to  compare Saunders’s  results  with the mathemati- 
cal model  presented  in  this  communication,  further  informa- 
tion was  needed  in  addition to the mean horizontal wind  speed 
of 15  m/s  and  the  precipitation  rate of 28 mm/h  provided; 
namely, 1) the height  of the  raindrop  camera,and  2)  the  type 
of the  terrain  where  the  measurements  were  taken.  The  infor- 
mation  supplied to  the  authors [ 131, [ 141  indicated that 1 )  
the height  of the camera  was between 3-5 ft,  (the  authors 
assumed  a  height of 1.5 m, though  strictly speaking, all equa- 
tions  in  this  communication  apply  at  heights  greater  than 10 
m),  and  2)  the  type of the  terrain was  assumed to  be “a flat 
countryside  with  some  form of short  vegetation.”  The  authors 
therefore assumed zo as  having the value of 0.10 m. 

Assuming the above and using (A15)  with rn % 0.2  in 
Appendix  A  and ( 1  3)  the mean  and  standard  deviation  of the 
canting angle  of  each raindrop size were  calculated.  These  are 
provided  in  Table  I,  whereas  Table I1 shows the same  calcula- 
tions  for  a  mean  horizontal wind  velocity  of 10 m/s. 

Assuming  a  Gaussian  canting  angle distribution  for each 
drop size and weighting  each  drop-size distribution  according 
to  the number of  drops  for  each size, we have plotted  the 
fraction of raindrop  population  with  canting angles 26 and 
< -6 degrees, as in Saunders’s Fig. 2. This is shown  in Fig. 1 
compared  with  Saunders’s  graph for  the 28  mm/hr  precipita- 
tion  rate  and  15  m/s  mean wind  velocity. 

In Fig. 2 the  fraction of raindrop  population,  with  canting 
angles 28 and < -6 degrees for 25 mm/h  precipitation  rate 

TABLE I 
MEAN AND  STANDARD DEVIATION OF CANTING  ANGLE1 

Drop  Radius 
(meters)  (Degrees)  (Degrees) 

0.00025 13.5 
0.00050 
0.00075 21.7 
0.00100 
0.00125 
0.00150 
0.00175 
0.00200 
0.00225 
0.00250 
0.00275 
0.00300 
0.00325 

41.8 
19.6  34.9 

32.7 
22.6  31.6 
23.1  31.0 
23.4  30.7 
23.5  30.5 
23.6  30.3 
23.6  30.3 
23.6  30.3 
23.6  30.2 
23.6  30.2 
23.6  30.2 

1 Mean horizontal wind  velocity U1 = 15 m/s,  measured at height 
h, = 10 m, height  of  observations h = 1.5 m,  drag  coefficient  CD = 
0.008, m = 0.2. 

TABLE I1 
MEAN AND STANDARD DEVIATION O F  CANTING  ANGLE2 

Drop  Radius 
(meters) @ewes) @egr=s) 

0.00025 
0.00050 
0.00075 
0.00100 
0.00125 
0.00150 
0.00175 
0.00200 
0.00225 
0.00250 
0.00275 
0.00300 
0.00325 

9.2  18.0 
13.4  16.1 
14.9  15.4 
15.6  14.9 
16.0  14.8 
16.1 14.6 
16.2 14.5 
16.3  14.5 
16.3  14.4 
16.3  14.4 
16.3  14.4 
16.3  14.4 
16.3  14.4 

2 Mean horizontal wind velocity U1 = 10 m/s,  measured at height 
h ,  = 10 m, height  of  observationsh = 1.5 m, drag  coefficient CD = 0.008, 
rn = 0.2. 

and horizontal-wind  velocities of 15  m/s  and  10  m/s,  is  shown. 
Fig.  3  shows the  fraction of total  drops having canting angles 
in  a 10’ interval for 25  mm/h  precipitation  rates  and hori- 
zontal wind  velocities of 1 5 m/s  and 10 m/s. 

DISCUSSION  AND  CONCLUSION 

In  this  communication we are  interested  in  calculating  an 
estimate of the mean and  standard  deviation  of  the  canting 
angle for  the individual raindrop sizes. This is used for  the 
calculation  of the crosspolarization  discrimination  values  in 
both ground  and  satellite microwave links. 

In  order to use the  model  one  needs to  have  a  knowledge  of 
a)  the  precipitation  rate,  b)  the  mean  horizontal  wind  speed  at 
a  reference  height,  and  c) the  type of terrain. 

It is to  be  noted  that ne-ar neutral  atmospheric  conditions 
are assumed-a situation  most  likely to exist  when  it is raining 
H51.  

Compared  with  Saunders’s  measured  canting  angle  distribu- 
tions  the  model  shows good  agreement.  The  difference  be- 
tween Saunders’s  results  and our  results in Fig. l  are  probably 
due  to  a) inaccuracies  introduced  by the  raindrop  camera, 
used by  Saunders,  in  producing  the images  of  small drops,  b) 
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c 

0 25  mm/h 

@ Saunders 28  mm/h 

f.9 

0. 9 
25  mm/h 

+ Saunders 28 mm/h 

Fig. 1. Fraction of raindrop population  with  canting angles 29 and <-I% U1 = Uo = 15 m/s, h = 1.5 m (comparison with 
Saunders). 

0 25 mm/h; U1 = Uo = 15 m/s 

@ 25 mm/h; U1 = U, = 10 m/s 

! 

8 (degrees) 

Fig. 2. Fraction of raindrop population  with  canting  angles >a and <-a, h = 1.5 m. 
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0 . 3  

25 mm/h; U1 = UQ = 15 m/s 

+ 25 mm/h,; U, =Uo = 10 m/s 

8 (degrees) 

Fig. 3. Fraction of total drops (1356) having canting angles in 10" interval, h = 1.5 m. 

the sample  of 259 drops  that  Saunders used to  calculate its 
canting  angle  distribution  being too small for  an  accurate 
canting angle distribution to  be  drawn,  and  c)  the  equations 
used in  this  communication  applicable  at  heights  equal to  or 
greater  than 10 m, not  completely  describing  horizontal  wind 
velocity  variations  and  generally  effects of atmospheric  condi- 
tions  on  canting angles in  a  precipitation  environment. 

From Fig. 2 it can  be  seen that  the higher the mean  hori- 
zontal wind  velocity the larger the spread of the canting 
angles.  This  can  also  be  concluded from  (1  2). 

Fig. 3 shows the  fraction  of  total  drops having canting 
angles in  a 10' interval. This graph  can  be  used to  evaluate the 
mean  and  variance of the effective  canting  angle  for the con- 
stant  canting angle  mqdel,  although it will be  more  accurate 
to  evaluate  them  from  Tables  I  and 11. It  must  be noted  that  in 
the  former case the  ordinate values  must be divided by  the 8 
interval  (in  radian). As an  example,  in the case of t he ' l 5  m/s 
mean  horizontal wind  velocity we obtain  a  mean  canting angle 
of 15.9O and  a  standard  deviation of 39O. 

APPENDIX A 

CALCULATION OF THE MEAN CANTING  ANGLE 60 

The  differential  equation  for  the  horizontal  drop  movement 
is given by 

where 

V horizontal  drop  velocity 
U wind  velocity at the position of the  drop 

145 

V u  vertical drop  velocity  (assumed to  be  constant  and 
equal to  the  terminal  velocity  in  stagnant air) 

g gravitational  constant. 

Equation (A1 ) is a  linear  differential  equation of the  f ist  
order  and  therefore  has  the  following general solution: 

Assuming that  there is no updraught  the  height of the  drop 
follows from 

h( t )  = h(Q) - VUt. (A3 1 

Using (A3)  in (Al)  we have 

The  solution of (A4) is given by 
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’0 

Using (A6)  in  (A5) we  get 

The  dependence of the wind  velocity on height  may  be also 
described by  a  power law for heights up to  300 m, 

U, wind  velocity  measured at a  reference  height h, 
(e.g., 10  m) 

Using (A14)  in  (A7)  the  mean  canting angle for  each rain- 
For  neutral  conditions  the  mean  horizontal wind  velocity drop can be  obtained  from 181 
varies  with  height  in  a  logorithmic manner 1101  as 

where, 

where 

u *  friction  velocity dh 
K Karman’s constant 
Zo constant  depending on  the  terrain. 

x = 8 / V u 2 h .  

r (m,  x)=  e - P p m - l  d p .  (A151 Therefore, 
m 

U *  Equations  (A1 3) and (A1 5) should  be  applied  at  heights 
~ ( h )  = u(h) + - e(g/’U dV (A9)  greater  than  10 m. For heights  lower  than  10  m  (A15)  seems 

K to give more realistic results. 

or 

But [ 161 

where 

E ,  (2) the  exponential  integral. 

Using  (A1 1) in  (A10) we obtain 

The mean canting angle for  each  raindrop can be  obtained 
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Radiation from Flanged Waveguide: Comparison of Solutions 

SHUNG-WU LEE AND LEON  GRUN 

Absfracf-The reflection coefficient of the  transverse  electric (TE 1) 

mode in a flanged  parallel-plate  waveguide  is  considered,  its  solutions 
derived by the fonr different  methods are numerically  compared. 

Consider the  radiation  from  a flanged  parallel-plate wave- 
guide  as is sketched  in  Fig.  1. This fundamental  problem is 
exactly  solvable  only for  the special case m = 2, where m7r is 
the  exterior angle of the wedges  forming the guide. For  an 
arbitrary value  of m ,  solutions available  are those calculated  by 
ray techniques [ 1 1 ,  [ 2 ] ,  published  more  than  ten  years ago. 
It is well-known that  ray  solutions  are  asymptotic  in  nature 
and  that  their  accuracy is generally  difficult to  assess. In  a 
recent  article MacPhie and  Zaghloul [3]  gave “an exact 
(numerical)  solution  by  the  correlation  matrix  method” for 
the flanged  parallel-plate  waveguide  with m = 3/2. I t  is there- 
fore  useful to  compare  numerically the ray  solutions  with  the 
MZ solution. 

For  the  incident transverse electric (TE,) mode with R 

odd  (symmetrical  mode),  the  reflection  coefficient I‘, calcu- 
lated by the ray  method described  in [2] is (for  exp (-jot) 
time  convention) 
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Fig. 1. Radiation  from flanged  parallel-plate  waveguide. rn is self- 
reflection  coefficient  of TE, mode. 

Here the  factor  in braces is the ray-to-mode  conversion  factor 
and the modal  angle of the TE, mode is 

Wedge diffraction  coefficients xiYr are  defined  in [4, eq. 
(4.10)]  and  are  given  by 

2 3 7  
- sin - 

cos - - cos - 
m m 

The  factorization  function G+ is given in [2 ,  eq.  (6.1 l ) ]  (a = 
2b and is tabulated  in [ 10 J . Two  remarks  about ( 1 )  are  in 
order.  a)  This  solution is a  generalization of [2,eq. (7.3c)l 
which  applies  only  for  the  special case rn = 2 (no flange). 
For m = 2,  (1) agrees  with the  exact  solution  obtainable  by 
the Wiener-Hopf technique. b) For  an  incident transverse 
electromagnetic  (TEM)  mode  and  with M = 3/2 a  corre- 
sponding  ray  solution of (1)  checks very  well with that  ob- 
tained  by  a generalized  mode-matching  procedure [ 51.  For  the 
radiation  problem  in Fig. 1,  the YFK solution [ 1  ] is the same 
as (1)  except  that  the  definition of G+ is different. 

For n = 1  and m = 3/2 we calculate rl from  (1) as  a  func- 
tion of a/A. Some  results  are  presented  in  Table I and Fig. 2, 
where we also  plot the  YFK  results  taken  from [ 1, Figs. 8d  and 
8el .  Note that these two ray  solutions  are generally  in  ex- 
cellent  agreement,  except  that  near a = 1.5 h (onset of TE3 
mode)  the YFK solution fails to  give the  discontinuous deriva- 
tives in  the curves.  (This is best  seen from  the original  figures 
in [ 1 ] .) It is worthwhile to  mention  that  an  improvement of 
the YFK solution using  a  more elaborate  ray  method  (the 
uniform  asymptotic  theory of diffraction) is given by  Boersma 
[6].  Two  other  methods  for calculating rl are given in [8]  
and [9].  For Q > 0.8 X their  numerical  results  are  in  good 
agreement  with  that  of  YFK,  and  therefore  with the present 
ray  solution  in  (1). 

We now  compare  the  ray  solution  in  (1)  with  the MZ solu- 
tion  [3, Fig.  41  and  Marcuvitz solution [ 7,  p.  1921 . The  nor- 

1 Because  of the  difference in definition  and  time  convention, 2/20 
used  here is equal to ( 4 2 4 0 4  (C, - iBa)-l in [ 81. 
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