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Abstract: A statistical model estimating the mean and standard deviation of each drop-size canting angle,
assuming Gaussian canting angle distributions, is presented. The model utilises the one-dimensional energy
spectrum of horizontal turbulence given by F.B. Smith, and, using the differential equation for the horizontal
drop movement, it calculates the mean and standard deviation of each drop-size canting angle. Comparison
with M.J. Saunders’s work shows good agreement. Application of the model to terrestrial and satellite links
shows that, for rain alone, the crosspolarisation discrimination variations for satellite paths are much higher
than in the terrestrial case, and that the crosspolarisation discrimination mean values are lower for terrestrial

paths.

1 Introduction

Current interest in microwave propagation studies through
precipitation particles has been prompted by proposals for
terrestrial and satellite communication systems operating
above 10 GHz. At these frequencies the presence of pre-
cipitation particles in the transmission medium causes
attenuation and depolarisation of the transmitted radi-
ation. Both effects may represent a severe limitation on
system performance, and, in particular, the depolarisation
effect is of considerable importance in the possibility of
using two orthogonal polarisations as separate communi-
cation channels in future satellite and terrestrial communi-
cation systems.

Rain is one of the principal agents causing attenuation
and depolarisation of the transmitted radiation in both ter-
restrial and satellite paths. In 1973, Watson and Arbabi
[1] showed that the cause of rain-induced cross-
polarisation was the canting of raindrops. In 1976,
Brussaard [2] published his well known meteorological
model for crosspolarisation due to rain, where he gave a
physical explanation of raindrop canting. He showed that
vertical wind gradients are a cause of canting, and he
employed a model for the dependence of wind speed on
height to calculate values of mean raindrop canting angles
for heights up to 300 m. Howard and Mathews [3]
published a paper extending Brussard’s model to include
estimates of mean raindrop canting angles on satellite
paths. In addition to the mean horizontal wind changes
with height, it is reasonable to assume that canting angle
variations owing to wind fluctuations with time can cause
crosspolarisation discrimination scintillations about a
mean value. A suggestion that this is so was made by
Semplak [4] in 1974. Since then, several workers [5-9]
have published statistical models predicting cross-
polarisation discrimination values, by assuming a mean
path angle and a Gaussian distribution with a variance
that provides a suitable spread for their crosspolarisation
discrimination data. Maher and Murphy [10] calculated
the variation of a raindrop canting angle as a function of
wind velocity in a town environment*. They showed that
the wind fluctuated in a sinusoidal manner with a fre-
quency of 0.5 Hz. Howard and Gerogiokas [11] published
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a statistical raindrop canting angle model employing the
one-dimensional energy spectrum of turbulence given by
Davenport [12]. Later Howard [13] improved on the
accuracy of the model by using the turbulence equations
given by Smith [14]. Using the values for the mean and
standard deviation of canting angle against raindrop size
calculated by Howard and Gerogiokas [11], Moupfouma
[15] published in a letter a theoretical model for calcu-
lating rain-induced crosspolarisation.

In this paper, the statistical model of Howard [13] is
extended and applied to calculate variations of cross-
polarisation discrimination values for terrestrial and satel-
lite links. The statistical model presented here relates
turbulence to the reaction of the raindrop canting angle to
this turbulence. It is assumed that in general a wind spec-
trum exists, and that, within the turbulent boundary layer,
the direction of the mean wind is constant [ 16] for the case
of neutral or near neutral atmospheric conditions (i.c.
purely mechanical turbulence), a case most appropriate in
a precipitation environment [12]f. Using the differential
equation describing the horizontal drop movement, a
canting angle ‘transfer function’ is developed. Applying the
horizontal wind velocity spectrum as ‘input’ and using
Taylor’s series [17], the ‘response’ of the drop (ie. the
mean and variance of its canting angle) is estimated. Appli-
cation of the model to terrestrial and satellite links shows
that large variations of the crosspolarisation discrimi-
nation values may exist, especially in satellite-to-earth
paths.

2 Theory

Turbulence consists of quasirandom motions correlated in
time and space, generated within the two lower km of the
atmosphere as a result of the drag of the underlying
surface on the wind, and by buoyancy forces when the
lower layers are warmed by contact with the ground. Being
essentially stochastic, turbulence has a basic random
content consistent with some bounded probability dis-
tribution, while at the same time being correlated in both
time and space.

The spectral components which compose a determin-
istic waveform are themselves deterministic. Thus the nth
spectral component may be represented by

Un(t) = U(nf) cos 2anft + a(nf)) 1)

where all the variables have their usual meaning.

1 Also SMITH, F.B.: personal communication
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In the case of turbulence, the spectral components are
themselves random processes. Thus, in eqn. 1, U(nf) and
o(nf) are random variables of amplitude and phase, and
Un(t) represents an ensemble of sample wind velocity func-
tions, one sample function for each possible set of values of
U(nf) and a(nf). The sample functions are each determin-
istic waveforms; they are pure sinusoids differing from one
another in phase and amplitude, depending on the value of
U(nf) and a(nf).

The differential equation for the horizontal drop move-
ment is given by [2]

av() g g
—+=V{)==
oty VO=3 U0 @
where
V(t) = horizontal drop velocity
V, = vertical drop velocity, assumed to be constant

and equal to the terminal velocity in stagnant air
U(t) = wind velocity at the position of the drop
g = gravitational constant

Eqn. 2 is a linear differential equation of the first order,
and its solution for the mean horizontal wind velocity (i.e.
the DC component) is given in Reference 3 for the case of
neutral or near neutral atmospheric conditions, using a
logarithmic wind profile. For completeness, it is repeated
here in the Appendix.

Applying now eqn. 1 in eqn. 2, we have

V.(t) = V(nf) cos 2mnft + Bnf)) 3)

In this case, V(nf) and B(nf) are random variables of
amplitude and phase, and Vn(t) represents an ensemble of
sample raindrop velocity functions. Eqns. 1 and 3 may be
rewritten as

Un(t) = U_("f_) (ej(Zmlfr+a(nf)) g e-j(Znanu(nI))) 4)
2
and
Vn(t) = M (ej(2nnfl+ﬂ(nf)) + e—j(Zmllel(nf))) (5)
2

Generalising eqns. 4 and 5 for any frequency f and intro-
ducing w = 2xf, we obtain, using eqns. 2, 4 and 5, the fol-
lowing equations:
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where
o(f) = BU) — olf)

The canting angle 6 of a raindrop due to wind variations is
given by [2]

Uu-v
V,

v

tan 0 =

®)
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Eqn. 8 may now be written as
U(f) cos wt — V(f) cos (wt + o(f)

tan 0 = v
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The variable 1/(V,(1 + (g/wV,)?)!/?) is the amplitude of a
‘transfer function’ relating tan 6 to a sinusoidal wind varia-
tion. tan~! (g/wV,) is the phase delay introduced by the
transfer function. The energy spectrum of tan 6, i.e. of the
output, can be obtained by applying this transfer function
to the horizontal wind velocity energy spectrum S(f). Inte-
grating this output spectrum over all frequencies, the
variance of tan @ can be calculated. Thus

Ciano = f | TFI2S(f) df
0

@ 1

= — - S(f) d 10

Jo v+ @ary Y Mo

The one-dimensional energy spectrum S(f) of turbulence
can be expressed [14] as

S(f) = 0.15U2/3¢2/3( =503 (11)

in m/s3, and where
f = frequency of wind variation
¢ = rate of turbulence energy dissipation
U = mean horizontal wind velocity at the height of
interest

In neutral or near neutral atmospheric conditions, the rate
of dissipation ¢ is given by

, dU

=l dh

(12)
where

U, = friction velocity (see Appendix)

h = height of interest

In the case of unstable atmospheric conditions, the rate of
turbulent energy ¢ is virtually independent of the height h
and the wind velocity U. Thus, in convective turbulence, ¢
being virtually a constant, the energy spectrum is given by

[14]
S(f) = 0.14U?3f 33 (13)

In the case where there is precipitation, the atmosphere is
most likely to be neutral or near neutral. This is the case,
ast (i) cloud cover will reduce incoming solar radiation so
that turbulence will be losing energy, but (ii) the ground
will be wet, and hence most of the available energy will go
into evaporation, thus adding to the turbulent energy.

t SMITH, F.B.: personal communication
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The combination of the above two conditions will
produce energy equilibrium in the turbulence, and hence
the atmospheric conditions will be neutral or near neutral.
In addition, although the turbulence in the atmosphere is
both convective and mechanical in origin, in high winds,
even without any precipitation present, convective turbu-
lence plays a relatively minor role [12]. The reason for this
is that whereas mechanical turbulence rapidly increases
with wind velocity, convective turbulence, if anything,
tends to be ‘damped out’ by the powerful mixing action
caused by the mechanical turbulence; the latter prevents
the necessary thermal instabilities from arising, and tends
to reduce the atmosphere to a state of neutral stability.

In addition to the variance of tan 6 given by eqn. 10, the
mean value of tan 0 is given by eqn. 39 (see Appendix).
Assuming that the probability density function f(0) of 0 is
‘smooth’ [17] about the mean value 7 of tan 0, the mean
and variance of the canting angle 0 can be estimated using
the mean and variance of tan 6, and by employing the
Taylor series expansion. In the case where f(0) is a Gauss-
ian distribution, this is readily seen to be true. Thus, in
general, if the mean value n and the variance 72 of the
random variable x are known, the random variable g(x)
has the following estimates of mean and variance:

2
" o’.\’
E(g(x)) = g(n) + ¢"(n) =~ (14)
and
02 = g2(n) + [(g'0)* + glmg" )]0z
" o‘i 2
—\ gt + ") = (15)
respectively. Using
x =tan0
n =tan 0
Gi = Ulz:m 0

g(x) = tan"! (tan 0)

we obtain, employing eqns. 14 and 15, the following esti-
mates for the mean and variance values of the canting
angle 0:

E(0) ~ tan~! (tan 8,) — tan 0, cos* 0,000 (16)
02 = cos* 0,02, + tan? O cos® 0o 0o (17)

Eqns. 16 and 17 can now be used to estimate cross-
polarisation discrimination variations in the presence of
rain.

The propagation of microwaves in the presence of pre-
cipitation may be described by

(Eh) — (Tll Tl 2)<Eh> (18)
Ev zZ=2, T2l T22 El’ Z=0

where the subscripts h, v denote horizontal and vertical
polarisations, respectively, and z(= 0—z,) is a thick layer
of precipitation.

The elements of the transmission matrix [T;;] are given
by

1 - -
Tll = (—— ((yv - thh) e — (}’h - thh) € lr-)

Yo = T

Ty = o (~(— 4Gu) ™™ + (1, — 4Gu) €
o= g » = 4G

T, = T e T m— qu e~ e 1=

12= T = 5 40! ;

(19)

IEE PROCEEDINGS, Vol. 132, Pt. F, No. 2, APRIL 1985

5
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where S,(0) and S,,(0) are the forward scattering complex
scalar amplitudes for vertical and horizontal polarisations,
respectively, N(R) is the number of drops/m?® for each
drop size, where R denotes the radius, g = 2n/K? with
K = 2n/d, d being the wavelength of the microwave signal.

Crosspolarisation discrimination is defined as the ratio
of the copolar signal amplitude to the crosspolar signal
amplitude in dB when one polarisation is transmitted and
the copolar and crosspolar signals are received separately.
Thus, using the notation of eqn. 18, we obtain for vertical
and horizontal polarisations the expressions

T;
XPD, =20 log,, |22 (22)
TIZ
and
T,
XPD,; =20 log;o | = (23)
T21

3 Computations

3.1 Comparison with Saunders’s [18] results
Before applying the statistical raindrop canting angle
model to estimate the crosspolarisation discrimination
values for terrestrial and satellite paths, a check was made
against the distribution of canting angles during two rain-
storms given in a paper by Saunders [18], using the images
of 463 raindrops obtained with a raindrop camera by per-
sonnel at the Illinois State Water Survey [19, 20]f. To
compare Saunders’s results with the model presented here,
further information is needed in addition to the mean hori-
zontal wind speed of 15 m/s and the precipitation rate of
28 mm/h provided, namely:

(a) the height of the raindrop camera

(b) the type of terrain where the measurements were
taken

(c) the height of the anemometer.
The information supplied to the author ] indicated that:

(d) the height of the camera was approximately 1.5 m

(e) the type of terrain was ‘flat countryside with some
form of vegetation’

(f) the height of the anemometer was assumed to be
approximately 10 m.

For the type of terrain indicated above the mean fric-
tion velocity U, was calculated to be 1.3 m/s, using a
terrain constant z, = 0.1 m in eqn. 34 (see Appendix). With

+ JONES, D.M.A.: personal communication
1 SAUNDERS, M.J.: personal communication
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the help of egns. 10, 16, 17 and 39 (see Appendix), the
mean and standard deviation of the canting angle of each
raindrop size were calculated. The results are tabulated in
Table 1, with Table 2 presenting results for a mean hori-

Table 1: Mean and standard deviation of canting angle

Drop E(6), a,,

radius, m deg deg

0.00025 8.17 44.91
0.00050 21.57 25.76
0.00075 25.07 20.47
0.00100 26.45 17.89
0.00125 27.07 16.32
0.00150 27.32 15.42
0.00175 27.42 14.87
0.00200 27.46 14.54
0.00225 27.48 14.37
0.00250 27.48 14.28
0.00275 27.48 14.24
0.00300 27.48 14.23
0.00325 27.48 14.23

Mean horizontal wind velocity U =15 m/s, measured at height h=
10 m; height of observations h=1.5 m, friction velocity U, =
1.303 m/s

Table 2: Mean and standard deviation of canting angle

Drop E(6), [/

radius, m deg deg

0.00025 10.66 2717
0.00050 17.30 16.64
0.00075 19.09 13.51
0.00100 19.75 11.90
0.00125 20.00 10.89
0.00150 20.06 10.30
0.00175 20.07 9.93
0.00200 20.05 9.7
0.00225 20.04 9.59
0.00250 20.03 9.53
0.00275 20.03 9.50
0.00300 20.03 9.50
0.00325 20.03 9.50

Mean horizontal wind velocity U =10 m/s, measured at height h=
10m; height of observations h = 1.5 m, friction velocity U, = 0.87 m/s

zontal wind velocity of 10 m/s. In the latter case, the mean
friction velocity U, was calculated to be 0.87 m/s.

A Gaussian canting angle distribution was assumed for
each drop size, with each drop-size distribution being
weighted according to the number of drops for each size
[21] (see Table 3). In Fig. 1, the fraction of raindrop popu-

Table 3: Weighting applied on individual Gaussian drop-size
canting angle distribution

R, cm Weighting
0.025 0.646
0.050 0.185
0.075 0.099
0.100 0.045
0.125 0.017
0.150 0.006
0.175 0.002
0.200 0.001
0.225 0.000
0.250 0.000
0.275 0.000
0.300 0.000
0.325 0.000

Precipitation rate =25 mm/h

lation with canting angles >6° and < —0° (as in Saun-
ders’s Fig. [18]) is plotted together with Saunders’s graph
for the 28 mm/h precipitation rate and 15 m/s mean hori-
zontal wind velocity. From Fig. 1 (or Table 1), a mean
effective canting angle of 14.1° is obtained with a standard
deviation of 38.6°.
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3.2 Application of model to a terrestrial link

The terrestrial link considered had a path length of 3 km,
and the transmitting and receiving antennas were assumed
to be at a height of 10 m. With a signal frequency of

o o o

fraction of population
g N ® 0 -
T

S o
> v

1 ] 1 1 1 1 1 1 1 1 1 1 1 ]
-90-80 -70-60-50 -40 30 20-10 O 10 20 30 40 S0 60 70 8090
8, deg

Fig. 1  Fraction of raindrop population with canting angles >0 and
<-0
Shown as curves a. Horizontal wind velocity U = 15 m/s, height i = 1.5 m, precipi-

lalio_n rate 25 mm/h. Comparison with Saunders’s results (curves b) for 28 mm/h
precipitation rate

11 Ghz, two mean horizontal velocities were considered,
10 m/s and 15 m/s, and four precipitation rates, 25 mm/h,
50 mm/h, 100 mm/h and 150 mm/h, were used. The mean
friction velocities U, mentioned above were assumed, their
values associated with a terrain of large open fields (200—
500 m). The path length was separated into 50 m long
layers.

The horizontal wind velocities at any two points within
each layer were taken as equal, with wind velocities
between layers considered completely uncorrelated. The
necessary length of the layers was calculated using

2nfx
U df (24)

R(x) = % LmS(f) cos

where R(x) is the spatial correlation function of velocity
and ¢? is the wind velocity variance, given by

2 o Lmsu”) df 25)

For a layer length of 50 m, the correlation function R(x) is
very nearly equal to 0.5. Therefore, if two points in space
were separated by a distance greater than 50 m, then the
wind velocities at these points were assumed to have a cor-
relation function R(x) equal to zero. Conversely, if the dis-
tance between two points in space was less than 50 m, the
wind velocities at the points were assumed to have a cor-
relation function R(x) equal to unity. In addition to the
above, the precipitation rate was assumed to be constant
along the whole of the path.

Using the system of layers described above, eqn. 18
becomes

(Eh) - (Tll Tl 2) (Tll TIZ) <T'11 T‘lZ)
Ev ==z T21 T22 In T21 T22 In-1 T‘Zl T22 Iy
X (E'> (26)
Ev z=0

As drops fall with vertical velocities that increase with
their size, their ‘past history’ will also depend on drop size.
For a terrestrial link, the different sized drops will arrive at
the observation height having canting angles that are
uncorrelated.

Attenuation and crosspolarisation discrimination calcu-
lations for vertical and horizontal polarisations were made
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by repeated application of eqn. 26. Eqns. 16 and 17 provid-
ed estimates for the mean and variance of each drop size.
Assuming a Gaussian distribution for each drop size,
random canting angles were generated. Thus, all drops in
each size were tilted at the same angle. This is perfectly
valid, as drops of the same size having the same ‘transfer
function’ will respond with the same canting angle to any
wind velocity input.
Some of the results of the above computations are
shown in Figs. 2 and 3. Fig. 2 shows a plot of cross-
801
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Fig. 2  Crosspolarisation discrimination against fade for terrestrial link

Frequency f= 11 GHz, horizontal wind vclocity U = 15 m/s, [riction velocity
U, = 1.3 m/s at a height i = 10 m, total path length I = 3 km. Curves a and c are
the maximum and minimum crosspolarisation discrimination bounds, respectively,
and curve b is the mean value of the crosspolarisation discrimination
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Fig. 3  Crosspolarisation discrimination against fade for terrestrial link

Frequency f= 11 GHz, horizontal wind velocity U = 10 m/s, friction velocity
U, = 0.87 m/s at a height i = 10 m, total path length I = 3 km. Curves a and ¢ arc
the maximum and minimum crosspolarisation discrimination bounds, respectively,
and curve b is the mean value of the crosspolarisation discrimination

polarisation discrimination values for vertical polarisation
against fade for a mean horizontal velocity of U = 15 m/s.
The three curves represent the mean value and the
minimum and maximum crosspolarisation discrimination
bounds. The results for a mean horizontal wind velocity of
U = 10 m/s are presented in Fig. 3.

3.3 Application of model to a satellite link

The elevation angle of the satellite path was taken to be
20° and precipitation was assumed to have been initiated
at a height slightly higher than 1 km, so that the total
precipitation medium length was 3 km. The precipitation
rates, wind velocities and friction velocities were assumed
to be the same as for the terrestrial case. The path length
was separated into layers 50 m long. Although for the
satellite link it may be argued that the layers should be
changing with height, as the wind velocity increases with
height (see eqn. 34), it can be shown that the spatial correl-
ation function varies slowly with wind velocity, and there-
fore with height. What is more important is that the
drop-size canting angles may not be considered uncor-
related. Thus, at the highest (i.e. ‘starting’) layer, all drops
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are subjected to the same wind velocity variations, and
their response to wind velocity fluctuations is fully corre-
lated. As the height decreases, owing to the fact that each
drop size falls with different vertical velocity V,, especially
near the ground, then the past history of each drop size
must be taken into account in order to correctly compute
the crosspolarisation discrimination values. Thus drop
sizes that had separated from the initial drop group by
more than a certain height d were considered to be uncor-
related with the rest of that group. For the uncorrelated
drops, each drop-size canting angle was computed inde-
pendently. For drops that were correlated, once a drop-
size canting angle was generated, the canting angle of each
other drop size was fixed with the help of eqn. 39. The
distance d changed with height, so as to keep the variation
of the mean horizontal wind velocity for each d value the
same. This variation was not more than 1%.

With this in mind, estimates of attenuation and cross-
polarisation discrimination values were computed using
eqns. 16, 17 and 26. Some of the results are presented in
Figs. 4 and 5. Fig. 4 shows a plot of crosspolarisation dis-

90|

il /_\
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1 1 L S L1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 12
fade, dB

Fig. 4  Crosspolarisation discrimination against fade for satellite link

Frequency f= 11 GHz, horizontal wind velocity U = 15 m/s, friction velocity
U, = 1.3 m/s at a height i = 10 m, total path length [ = 3 km. Curves a and c arc
the maximum and minimum crosspolarisation discrimination bounds, respectively,
and curve b is the mean value of the crosspolarisation discrimination
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Fig. 5  Crosspolarisation discrimination against fade for satellite link

Frequency f= 11 GHz, horizontal wind velocity U = 10 m/s, friction velocity
U, = 0.87 m/s at a height h = 10 m, total path length | = 3 km. Curves a and c are
the maximum and minimum crosspolarisation discrimination bounds, respectively,
and curve b is the mean value of the crosspolarisation discrimination

crimination values for vertical polarisation against fade for
a mean horizontal wind velocity of U = 15 m/s. As in the
terrestrial case, the three curves represent the mean value
and the minimum and maximum crosspolarisation dis-
crimination bounds. The results for a mean horizontal
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wind velocity of U = 10 m/s are shown in Fig. 5. Attenu-
ation variations are small with wind fluctuations, and they
were neglected in both the satellite and terrestrial cases.

Figs. 4 and 5 show much higher crosspolarisation dis-
crimination variations than Figs. 2 and 3 (for the terrestrial
case). In addition, the mean crosspolarisation discrimi-
nation levels for rain only are higher for satellite paths (see
also Reference 3). To explain these results, the following
are noted:

(a) The mean canting angle for each drop size is very
nearly zero for heights above 500 m. As a result, the mean
crosspolarisation discrimination increases, as the cross-
polar amplitudes T}, and T3, in eqns. 22 and 23 have their
values diminished

(b) Although for large heights the individual drop-size
canting angle standard deviations also decrease, any varia-
tions of the drop canting angles greatly influence the small-
valued crosspolar signal amplitudes, especially as most of
the drops are now correlated, and respond in a similar
fashion to any wind variations. The result is that cross-
polarisation discrimination variations now become much
higher.

4 Conclusions and discussion

In this paper a statistical model for estimating the mean
and standard deviation of each drop-size canting angle has
been presented. Computations of crosspolarisation dis-
crimination values for terrestrial and satellite links using
the model have been given.

The mathematical analysis presented is simplified in
that only the one-dimensional spectral expansion of turbu-
lence has been used. In addition, although for the strong
winds considered no change of wind direction is expected
to occur, for lighter winds, direction as well as wind speed
may vary with time. Similarly, raindrop oscillations and
drop-shape variations [22] may be of importance at
heights above the surface layer, especially in convective-
type turbulence.

For a more comprehensive and complete theoretical
precipitation model, it is evident that further investigation
is required. Clearly, there is much to be done.
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6 Appendix: Calculation of the mean canting
angle 6,

The differential equation for the horizontal drop move-
ment is given by

av) g g
—+=V@t)—=U()=0 27
oty VO—3 U0 @7
where V, U, V, and g are defined above.

We note that eqn. 27 is a linear differential equation of
the first order, and so has the following general solution:

]
V(t)=C e~ @Ver 4 Tg/_ e-(gqu)tJ‘ U(z) eV e (28)
0

v

Assuming that there is no updraught, the height of the
drop follows from

h(t) = h(0) — V,t (29)
Using eqn. 29 in eqn. 27, we have
dv(h) g g
—-= = U(h)=0
iV V(h) + V2 U(h) (30)

The solution of eqn. 30 is given by

h
Vb = C, e _ L e‘”’”"z’"J" o= (@lVu2)y
v, 0

x U(y) dy (31)
where

h
C, = 1imit[V(I1) e-<9/V-'2"'+I—/g-5 J g~ lVArg(y) dy]

h— o v JO

=0 +T,gi J e~V Iy(y) dy (32)
v JO

Using eqn. 32 in eqn. 31, we obtain

V(h) — % 6‘”“’"2)"[‘[\ e-(gquz))'U(y) dy
0

v

h
_ J e~ @V Y(y) dy:| =792_ elalV o2

0 v

" f e~ () dy (33)
h
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For neutral conditions, the mean horizontal wind velocity
varies with height in a logarithmic manner [14], as

U
Up) =2 In <lo) (34)

where U, is the friction velocity, K is Von Karman’s con-
stant and z, is a constant depending on the terrain.
Therefore

Y L[ o=@V
V(h) = U(h) 4+ —* elo/Vo2)h j " o
K h y
or
U* Vo2)h
V(h) = U(h) + =% elo/V«dh
K
® e~ 6v2))
’ vy 9" 36
~[H/Vv2)h (g/V2y (g/Vs)y (36)

However, we note that [23]

Jm CT_' dt = E(2) 37)

where E,(z) is called the ‘exponential integral’.
Using eqn. 37 in eqn. 36, we obtain

U o ‘
V(h) = Uh) + ?* eWVeE (g/V2h) (38)

The mean canting angle for each raindrop can be obtained
from
U(h) — V(h)

V,

v

tan 0y =

= U* (g/Vo2)h 2
= <o S E o/ V) (39)
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